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Abstract 

We construct an exotic foliation on hyperbolic bundles of genus 1, whose fiber is 
a punctured torus. We will use specially the method used in [4]. 

1. Introduction 

In [3], Ghys and Sergiescu proved an important result of classification 
for nonsingular foliations without compact leaf on hyperbolic bundles of 

genus 1. They proved that any class ( )2≥rCr  transversely oriented 

foliation without compact leaf is conjugated to a model foliation built in 
[3]. Dathe and Tarquini [2] proved the optimality of this result by 

building exotic foliations in class 0C  and .1C  All these results lead with 
the compact case meaning on compact bundles. This motivates us to study 
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foliations on open hyperbolic bundles. Hatcher [4] built a foliation without 
compact leaf on hyperbolic compact bundle with boundary. Taking 
inspiration with Hatcher work, we build smooth exotic foliations on any 
genus 1 open hyperbolic bundle proving that Ghys and Sergiescu result 
cannot be extended in the non-compact case. So, the compacity is 
essential in this classification. In the first part of this paper, we will recall 
some essential tools for the construction. The second part leads with how 
homotopies between foliations on [ ],1,0×T  where T is the punctured 

torus are built, which is the first step to the construction of exotic 
foliation, which is the last part of this work. 

2. Preliminaries 

2.1. Integrable homotopies 

Let 0F  and 1F  be two codimension q foliations on a differentiable 

manifold M. A class rC  integrable homotopy between these foliations is a 

class rC  codimension q foliation H  on [ ]1,0×M  transverse to { }tM ×  

for ,10 ≤≤ t  such that { } 00 FH� =×M  and { } .1 1FH� =×M  

Here homotopy can be seen as a deformation of 00 HF =  and 

11 HF =  throughout intermediate foliations tH  induced by H  on 

{ }.tM ×  

Example 1. Let 0ω  and 1ω  be two nonsingular closed 1-forms on a 

differentiable manifold M transverse to a dimension one foliation .L  Here 
transversality means that, if X is a nonsingular vector field tangent to ,L  
then ( ) 00 >ω X  and ( ) 01 >ω X  anywhere. According to Frobenius 

theorem, these two forms, respectively, define two codimension 1 
transversely oriented foliations 0F  and ,1F  whose transverse orientation 

is given by the orientation of .L  Suppose that the two forms are 

cohomological, meaning that df=ω−ω 01  for some class ∞C  function f 

on M. Define the one form Ω  on [ ]1,0×M  as 
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( ) ( ) ( ) ( ) ( ) [ ].1,0,for,,,1 01, ×∈+ω−+ω=Ω Mtxtxdttxftt xxtx  

Thus, 

( ) .001 =−=+ω−ω=Ω dfdtdfdtdtdfdtd   

The vector field X defined above can be viewed as a vector field on 
×M [ ]1,0  independent from t. So we have ( ) 0>Ω X  everywhere. Ω  is a 

closed nonsingular one form on [ ].1,0×M  It defines a codimension 1 

foliation H  transverse to [ ]1,0×M  for ,10 ≤≤ t  and { } 00 ω=×Ω M  

and { } .1 1ω=×Ω M  The foliation H  is an integrable homotopy between 

0F  and .1F  

2.2. Train tracks 

Definition 1. A train track τ  on a surface M is a compact subspace 
of M homeomorphic to a graph without boundary, whose edges are 
differentiable segments of M, tangent to each other at vertices. The 
vertices are called switches. 

We said that a train track is oriented, if the tangent space at any 
point is oriented. 

We suppose that the connected components of the complement of τ  
are homeomorphic to discs, whose boundary is not smooth. 

A suitable neighborhood ( )τV  of a train track τ  is a thickening, 

whose boundary has singularities of punch type; this thickening has the 
same number of singularities at the boundary as the train track has 
vertices. Such a neighborhood is obtained, for example, by gluing through 
the sides a rectangle for each edge of the train track. A foliation by ties of 
( )τV  is a foliation of ( ),τV  transverse to the boundary, and whose leaves 

go from boundary to boundary. Collapsing the leaves of the foliation by 
ties, we obtained a train track. 



HAMIDOU DATHE and ADAMOU SAIDOU 90

When we have a suitable neighborhood V of a train track τ  endowed 
with a system of ties, a longitudinal foliation is a foliation of V, whose 
leaves are including the boundary and without singularities inside. 

If the connected components of the complement of τ  are 
homeomorphic to discs, whose boundary is not smooth, so for .\ VM  If 
we have a longitudinal foliation of V, we can collapse each connected 
component of the complement of V to get at most one saddle singularity. 
We obtain a foliation of the manifold M with a singularity in the center of 
any component of the complement of V except for bigoni, which collapse 
without showing any saddle singularity. The number of separators of the 
saddle point is equal to the number of punches on the boundary of the 
connected component of the complement of V. 

Definition 2. A foliation F  is carried by a train track ,τ  if we have 

(1) a suitable neighborhood V ; 

(2) a foliation by ties T  of V; 

(3) a longitudinal foliation 1F  of V; 

satisfying 

(a) the train track obtained by collapsing the ties is ;τ  

(b) F  is obtained from 1F  by collapsing the connected components 

of the complement of V; 

(c) T  and 1F  are transverse. 

If τ  carries ,F  each leaf of F  is obtained from a leaf of .1F  

A system of weight µ  for τ  is an assignment of a number ( )aµ  in ∗
+R  

to each edge a of ;τ  these weights satisfy the compatibility condition at 

the switches: The sum of the outgoing weights at the switch is equal to 
the sum of ingoing weights. We say that a train track is recurrent, if it 
has a system of weights. If we have a train track endowed with a system 
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of weights ,µ  then we can replace each edge by a foliated rectangle of 

larger ( ).aµ  According to the compatibility, the rectangles are glued to 

give a measured foliation carried by .τ  

2.2.1. Transversely affine laminations 

Let M be a manifold and M~  be its universal covering. A transversely 
affine structure for a foliation F  of M (with singularity) attributes to 
each path in M transverse to ,F  an affine structure invariant by the 
homotopy of paths transverse to the leaves. 

Let F~  be the lift of F  to the universal covering M~  of M. A 
transversely affine structure of F  is lifted to a transversely affine 

structure for .~F  As M~  is simply connected, the affine transverse 
structure on F~  determines a unique transversely euclidian structure up 
to multiplication by a scalar number obtained by choosing a measure for 
the transverse segment and which can extend to the others transverse 
segments. Any deck transformation of M~  sends a transversely euclidian 
structure of F~  on a scalar multiple transversely euclidian structure of 
the above one. 

Conversely, a class of projection of transversely euclidian structures 
of F~  for which the deck transformations act as multiplications by scalars 
determine a transversely affine structure of .F  We can then give the 
next definition of transversely affine structure for a lamination. 

Definition 3. Let L be a lamination of M and L~  its lift to .~M  We say 

that L is a transversely affine lamination, if L~ is a transversely measured 
lamination such that deck transformations act as multiplications by 
scalar. 

3. Homotopy Between Foliations on [ ]1,0×T  

To built foliations without compact leaf on ,IT ×  we will consider a 

train track (see Figure 4 in [4]) on the universal covering T~  of the torus T 

private to an open disc, which is 2R  private of a neighborhood of 2Z  and 
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assign weights to the train track such that right translations by one unit 
multiply the weight by 2 while up translations multiply by a parameter 

.0>µ  These weights define a measured lamination ( )tL ,~ µ  on T~  

invariant by deck transformations with the measure multiply by a scalar 
hence lifts a transversely affine lamination ( )tL ,µ  on T. Collapsing the 

supplementary of the lamination ( ),, tL µ  one can obtains a transversely 

foliation ( )t,µF  on T transverse to T∂  with a unique saddle singularity. 

We can consider the supplementary of the lamination as a quadrilateral 
and collapsing it, we get a saddle singular point. Two particular cases are 
the case 0=t  and the case where t and µ  verify the condition 

( ) .12 tt µ=µ−+   

If ,0=t  the lamination ( )0,µL  contained a unique closed leaf, which 

is a circle projection of a line of slope 0. The other leaves form a band of 
parallel half-lines starting at T∂  and spiralling into the circle leaf from 
below. If we choose ( ) ( )11,, tt µ=µ  satisfying ( ) ,12 tt µ=µ−+  then the 

lamination ( )11,~ tL µ  has a single closed leaf, which is a circle of slope 1 

and all the other leaves spiralling in to this circle from below. 

Note that if we fix 1µ  and let t increase, we are transferring sheets of 

leaves of thickness t from one pair of opposite sides of the complementary 

quadrilateral of ( )tL ,µ  to the other pair of opposite sides, as indicated in 

[4]. So, we can construct a measured lamination in [ ]1,0~ ×T , which 

meets { }0×T  in ( )0,1µL  and { }1×T  in ( )11, tL µ  with a layer of saddles 

achieving the surgery of ( )0,1µL  to ( )., 11 tL µ  So, we obtain foliation on 

[ ]1,0×T , which we denote by ( ) ( ){ },1,1,0,11tF  the vectors ( )0,1  and 

( )1,1  corresponding to the limit cycles of the boundary foliations 

( )0,1µF  in { }0×T  and ( )11, tµF  in { },1×T  oriented by the direction of 

spiralling. This foliation meets each slice sT ×  in foliation transverse to 
{ }sT ×∂  with a single saddle singularity. So, this foliation is a homotopy 

between foliations ( )0,1µF  in { }0×T  and ( )11, tµF  in { }.1×T  
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Example 2. We can construct examples of these foliations by 
considering suitable linear map in ( )Z,2SL  to T. We obtain foliations 

( ) ( ){ }srqpt ,,,1F  in [ ]1,0×T  meeting { }0×T  and { }1×T  in foliations 

(each with a single saddle singularity), which spiral in from the right to 
oriented limit cycles with slopes pq  and rs  provided .1=− qrps  

4. Exotic Foliations on Hyperbolic  
Bundles of Genus 1 

4.1. Punctured torus bundles over the circle 

Set { }0\2TT =  as the punctured torus and T~  as the plan 2R  

private with .2Z  Consider ( )Z,2SLA ∈  be a hyperbolic automorphism of 

,~T  it induces a diffeomorphism on T denoted .φ  Consider in T, the 
foliations by parallel lines to the eigendirections of A. These foliations 
have dense leaves. We define the punctured torus bundle 

[ ] ( ) ( )( ).1,~0,1,0 xxTM φ×=φ  

The product foliation on [ ]1,0×T  descends to the quotient on φM  to a 

foliation, we call model foliation. We obtain two model foliations on .φM  

A foliation on φM  is called exotic, if it is not conjugated to any model 

foliation on .φM  

We will prove the following theorem: 

Theorem 1. There is on any punctured torus bundle an exotic class 

( )2≥rC  foliation without compact leaf. 

4.2. Proof 

Step 1. Construction 

Let 1SMT →φ  be the bundle, whose fiber T is the torus private 

with an open disc and monodromy ( )Z,2SL∈φ  with .2tr >φ  
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We consider for ,φ  the sequence ( ) 2, Z∈ii qp  with ;,,0 ni …=  

111 =− ++ iiii pqqp  and ( ) ( )nn qpqp ,, 00 =φ  corresponding to the edge 

paths in the diagram of ( ).,2 ZSL  For each i, we obtain the foliation 

{( ) ( )}11,,,1 ++ iiiit qpqpF  in [ ]1,0×T , which is an homotopoy between 

foliation on the boundary foliations as above. {( ) ( )}11,,,1 ++ iiiit qpqpF  

and {( ) ( )}2211 ,,,1 ++++ iiiit qpqpF  are gluing together because they have 

the same limit cycle for the foliation in the boundary component to be 
glued. The relation ( ) ( )nn qpqp ,, 00 =φ  allows us to glue the last 

components using .φ  We require the gluing to preserve the transverse 

measure at a fixed lift of T∂  to .~T  So, we obtain a transversely affine 
foliation on ,φM  which meets the boundary in a foliation with a 

transverse measure. We denote F  be the resulting foliation on ,φM  

which has no compact leaf (see [4]). 

Step 2. Desingularization 

Remark 1. Let T be the torus private with an open disc. The Euler 
number of T is ( ) .1−=ξ T  According to Hopf theorem, if F  is a singular 

foliation on T with a single saddle singularity s inside T, it has four 

separators. Indeed, ( ) ( ) .12
41ind −=−==ξ sT  Also, if the singularity s 

is at the boundary and the foliation transverse to ,T∂  then s has three 

separators. Indeed, ( ) .12
31 −=−=ξ T  

The foliation F  is a singular foliation with a singularity homeomorphic 
to a circle. As the single singularity in a fiber is a saddle singularity with 
an even number of separators, we can do the desingularization of the 
foliation F  to get a smooth one in .φM  Let C be the singular circle of the 

foliation .F  Consider V be a closed tubular neighborhood of C in φM  

such that V∂F  is a union of product foliation of smooth foliation of torus, 
whose leaves are isotopic to ( { }) ( ) ( )( ) ( [ ] ).1,01,~, ∈φ×∂ txoxtTV ∩  
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By attaching copies of the product foliation { { } }12 ; SxxD ∈×  of 12 SD ×  

to ( )VM int−φF  along the leaves of 12 SD ×∂  and ,V∂  we obtain a ∞C  

foliation denoted also .F  Removing the boundary of T and as the foliation 
on the fibers is transverse to the boundary, one can obtains a foliation G  
on the once-punctured torus bundle without compact leaf. 

Step 3 

Lemma 1. The foliation G  is exotic. 

Proof. To prove that G  is an exotic foliation, we will consider how it 
intersects the fibers of .φM  The trace of the foliation G  varies from fiber 

to fiber. Also, it is not a product foliation unlike the model foliations. The 
trace of the foliation G  on the boundary of [ ]1,0×T  contains a compact 

leaf and the other leaves spiralling in to this compact leaf. This is not true 
in the case of model foliations, whose trace in the fiber is regular minimal 
foliations. So, the traces of these foliations on the fiber are not 
conjugated. Hence, the foliation G  is exotic.  

Remark 2. As the foliation on T is transverse to the boundary, one 
separator of the singularity is transverse to the boundary. We can do a 
Whithead operation by deleting this separator, hence we carry the 
singularity on the boundary. Removing the boundary, the singularity is 
deleted. So, we obtain a nonsingular foliation on T. 

Example 3. Let ( ),,2
11
12 ZSL∈





=φ  i.e., ( ) ( ).,2, yxyxyx ++=φ  

One obtains the sequence ( ) 2, Z∈ii qp  such that ( ) ( )0,1, 00 =qp  and 

( ) ( ) ( )0,11,2, 77 φ==qp  verifies .111 =− ++ iiii pqqp  We have the 

following sequence from the diagram of ( ):,2 ZSL  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).1,2;1,1;2,1;1,0;2,1;1,1;1,2;0,1 −−−−−−  

Considering the foliations {( ) ( )}11,,, ++ iiiit qpqpiF  in ,IT ×  one can 

obtains an exotic foliation on .φM  
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